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 ELEMENTARY PARTS OF VIBRATORY SYSTEMS 

 

Vibratory systems comprise means for storing potential energy (spring), means for 

storing kinetic energy (mass or inertia), and means by which the energy is gradually lost 

(damper). The vibration of a system involves the alternating transfer of energy 

between its potential and kinetic forms. In a damped system, some energy is dissi- 

pated at each cycle of vibration and must be replaced from an external source if a 

steady vibration is to be maintained. Although a single physical structure may store 

both kinetic and potential energy, and may dissipate energy, this chapter considers 

only  lumped  parameter  systems  composed  of  ideal  springs, masses, and  dampers 

wherein each element has only a single function. In translational motion, displace- 

ments  are  defined  as  linear  distances;  in  rotational  motion,  displacements  are 

defined as angular motions. 

 

 

 TRANSLATIONAL MOTION 

 

Spring:- In the linear spring shown in Figure1, the change in the length of the spring is 

proportional to the force acting along its length: 

 

F = k(x - u) (1) 

 

The  ideal  spring  is  considered  to  have  no  mass; thus,  the  force  acting  on  one  end  is  

equal  and opposite to the force acting on the other end. The constant of proportionality k 

is the spring constant or stiffness. 

 

 

 

Figure1. Linear spring. 

 

Mass:- A mass is a rigid body (Figure 2) whose acceleration ẍ  according to Newton’s 

second law is proportional to the resultant F of all forces acting on the mass:* 

 

F = m ẍ (2) 
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Figure 2.    Rigid mass. 

Damper.    In the viscous damper shown in Figure 3, the  applied  force  is  proportional  

to  the  relative velocity of its connection points: 

F = c(ẋ - u̇ ) (3) 

 

The constant c is the damping coefficient, the characteristic parameter of the damper. The 

ideal damper is considered to have no mass; thus the force at one end is equal and 

opposite to the force at the other end. 

 

 
 

Figure.3 Viscous damper. 

 ROTATIONAL MOTION 
 

The elements of a mechanical system which moves with pure rotation of the parts are 

wholly analogous to the elements of a system that moves with pure translation. The 

property of a rotational system which stores kinetic energy is inertia; stiffness and 

damping coefficients are defined with reference to angular displacement and angular 

velocity, respectively. The analogous quantities and equations are listed in Table.1. 

 

TABLE 1. Analogous Quantities in Translational and Rotational Vibrating Systems 

Translational quentity rototinal quantity 

Linear displacement x Angular displacement  
Force F Torque M 

Spring constant k Spring constant kr 

Damping constant c Damping constant cr 

Mass m Moment of inertia I 

Spring law F  k(x1   x2) Spring law M  kr(1   2) 

Damping law F  c(ẋ1   ẋ2) Damping law M  cr(̈ 1   ̇ 2) 

Inertia law F  mẍ Inertia law M  I̈ 

 

In as much as the mathematical equations for a rotational system can be written by analogy 

from the equations for a translational system, only the latter are discussed in detail. 

Whenever translational systems are discussed, it is understood that corresponding equations 
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apply to the analogous rotational system, as indicated in Table.1. 

 PERIODIC MOTION 

 

Vibration is a periodic motion, or one that repeats itself after a certain interval of time called the 

period, T. Figure 4. illustrated the periodic motion time-domain curve of a steam turbine bearing 

pedestal. Displacement is plotted on the vertical, or Y-axis, and time on the horizontal, or X-

axis. The curve shown in Figure 5 is the sum of all vibration components generated by the 

rotating element and bearing-support structure 
 

 
Figure 4.  Periodic motion for bearing pedestal of a steam turbine. 

 

 
Figure 5  Discrete (harmonic) and total (none-harmonic) time-domain vibration 

curves. 
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 MEASURABLE PARAMETERS 

 

As  shown  previously,  vibrations  can  be  displayed  graphically  as  plots,  which  are referred 

to as vibration profiles or signatures. These plots are based on measurable parameters (i.e., 

frequency and amplitude). Note that the terms profile and signature are sometimes used 

interchangeably by industry. In this module, however, profile is used to refer either to time-

domain (also may be called time trace or waveform) or frequency-domain plot. 

 

Frequency 
 

Frequency is defined as the number of repetitions of a specific forcing function or vibration 

component over a specific unit of time. Take for example a four-spoke wheel with an 

accelerometer attached. Every time the shaft completes one rotation, each of the four spokes 

passes the accelerometer once, which is referred to as four cycles per revolution. Therefore, if 

the shaft rotates at 100 rpm, the frequency of the spokes passing the accelerometer is 400 cycles 

per minute (cpm). In addition to cpm, frequency is commonly expressed in cycles per second 

(cps) or Hertz (Hz). 

 

Amplitude 
 

Amplitude refers to the maximum value of a motion or vibration. This value can be 

represented in terms of displacement (mils), velocity (inches per second), or acceleration (inches 

per second squared), each of which is discussed in more detail in the following section on 

Maximum Vibration Measurement. 

 

Displacement 

 

Displacement is the actual change in distance or position of an object relative to a reference 

point and is usually expressed in units of mils, 0.001 inch. For example, displacement is the 

actual radial or axial movement of the shaft in relation to the normal centerline usually using 

the machine housing as the stationary reference. Vibration  data,  such  as  shaft  displacement  

measurements  acquired  using  a  proximity probe or displacement transducer should always be 

expressed in terms of mils, peak – peak  

 

Velocity 

 

Velocity is defined as the time rate of change of displacement (i.e., the first derivative, 
𝑑𝑋

𝑑𝑡
  or  𝑋̇) 

and is usually expressed as inches per second (in./sec). In simple terms, velocity is a 

description of how fast a vibration component is moving rather than how far, which is described 

by displacement. 
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Acceleration 

 

Acceleration is defined as the time rate of change of velocity (i.e., second derivative of 

displacement,   
𝑑2𝑋

𝑑𝑡2   or 𝑋̈) is expressed in units of inches per second squared ( inch/ sec
2
 ) 

Acceleration is commonly expressed in terms of the gravitational constant, g, which is 32.17 

ft/sec2. In vibration analysis applications, acceleration is typically expressed in terms of g-RMS 

or g-PK. These are the best measures of the force generated by a machine, a group of 

components, or one of its components. 
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TYPES OF VIBRATION  

 

Vibration Classifications  

Linearity  

linear 

non - 
linear  

Excitation  

free  

force  

Damping  

undamped 

damped  

Countinuty  

continous 

descrite 

period of 
ocsillation  

harmonic  

periodic  

general  

random  
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 Newtown Laws of motion  

Newton's First Law of Motion: 

Every object in a state of uniform motion tends to remain in that state of motion unless an 

external force is applied to it.  

Newton's Second Law of Motion: 

The relationship between an object's mass m, its acceleration a, and the applied force F is 

F = ma. Acceleration and force are vectors; in this law the direction of the force vector is 

the same as the direction of the acceleration vector. 

Newton's Third Law of Motion: 

For every action there is an equal and opposite reaction.  

Free Body Diagrams ( F.B.D )  

Drawing Free-Body Diagrams 

Free-body diagrams are diagrams used to show the relative 

magnitude and direction of all forces acting upon an object 

in a given situation. A free-body diagram is a special 

example of the vector diagrams. These diagrams will be 

used throughout our study of physics. The size of the 

arrow in a free-body diagram is reflects the magnitude of 

the force. The direction of the arrow shows the direction 

which the force is acting. Each force arrow in the diagram is labeled to indicate the exact 

type of force. It is generally customary in a free-body diagram to represent the object by a 

box and to draw the force arrow from the center of the box outward in the direction 

which the force is acting. An example of a free-body diagram is shown at the right. 

The free-body diagram above depicts four forces acting upon the object. Objects do not 

necessarily always have four forces acting upon them. There will be cases in which the 

number of forces depicted by a free-body diagram will be one, two, or three. There is no 

hard and fast rule about the number of forces which must be drawn in a free-body 

diagram. The only rule for drawing free-body diagrams is to depict all the forces which 

exist for that object in the given situation. Thus, to construct free-body diagrams, it is 

extremely important to know the various types of forces. If given a description of a 

physical situation, begin by using your understanding of the force types to identify which 

forces are present. Then determine the direction in which each force is acting. Finally, 

draw a box and add arrows for each existing force in the appropriate direction; label each 

force arrow according to its type. If necessary, refer to the list of forces and their 

description in order to understand the various force types and their appropriate symbols. 

http://www.glenbrook.k12.il.us/GBSSCI/PHYS/Class/newtlaws/u2l2b.html#Top
http://www.glenbrook.k12.il.us/GBSSCI/PHYS/Class/newtlaws/u2l2b.html#Help
http://www.glenbrook.k12.il.us/GBSSCI/PHYS/Class/newtlaws/u2l2b.html#Help
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 Equations of motion:-  

When a body is moving with a constant acceleration, the following relations are valid for 

the distance, velocity and acceleration.  

 

 

By substituting (1) into (2), we can get (3), (4) and (5) 

where 

s = the distance between initial and final positions (displacement) (sometimes 

denoted R or x)  

u = the initial velocity (speed in a given direction)  

v = the final velocity  

a = the constant acceleration  

t = the time taken to move from the initial state to the final state  
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Report writing  

Every student is required to submit his own separate report for each test 

conducted. Reports should be in hand-writing, on A4 paper. In general, the 

reports should be arranged in the following order: 

1- Abstract   

(An abstract is a self-contained, short, and powerful statement that describes a 

larger work. Components vary according to discipline. An abstract of a social 

science or scientific work may contain the scope, purpose, results, and contents of 

the work.) 

2- Introduction 

(Begin with background knowledge-What was known before the lab? What is the 

lab about? Include any preliminary/pre-lab questions. Also, include the purpose of 

the lab at the end of the introduction. Be clear & concise) 

3- Materials and Equipment  

(Can usually be a simple list, but make sure it is accurate and complete.) 

4- Procedure 

    (Describe what was performed during the lab Using clear paragraph structure, 

explain all steps in the order they actually happened, If procedure is taken directly 

from the lab handout, say so! Do NOT rewrite the procedure!) 

5- Collected Data  

(Label clearly what was measured or observed throughout the lab Include all data 

tables and/or observation) 
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6- Calculations 

(Show work, include units, and clearly label your results) 

7-  Results  

(Are usually dominated by calculations, tables and figures; however, you still 

need to state all significant results explicitly in verbal form.) 

8- Discussion and Analysis  

     (Answer any post-lab questions with complete thoughts. Assume the reader does 

not know anything about this topic.) 

9- Conclusions 

(Refer to the purpose- What was accomplished? Analyze your data, report your 

findings and include possible sources of error. How does this relate to topics outside 

of the classroom?) 

10- References  

Include an alphabetical list of all references used throughout the experiment and/or 

for writing the lab report. Include your textbook , lab manual, internet, etc.  

 

 

DO NOT USE PERSONAL PRONOUNS! 

(This includes: me, my, I, our, us, they, her, she, he, them, etc.) 
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I- Objectives: 

 

1) To determine the stiffness of a helical spring using two methods; 

a -Deflection curve and Hook’s Law. 

b -Time measurements. 

Then to compare their results with the analytical value. 

2) To find the effective mass of the spring that has been used. 

3) To evaluate the gravitational acceleration constant g. 

4) To estimate the value of the modulus of rigidity G for the material of the helical 

spring, and compare it with the standard value for steel. 

 

II- System Description: 

The spring-mass system in Figure1.1 shows an extension linear helical spring with an 

initial free length Li, effective mass mS, supported vertically from one of its ends; while 

the other end is free to elongate and attached to a load-carrier of mass. The free length of 

the spring loaded with the load carrier alone is Lo. Disks each of (md = 0.4 kg) mass are 

added to the carrier gradually, and each loading state causes the spring to elongate by the 

distance  from its unloaded length Lo to get a total length of L. 

Lo

L

Disk

md

Load-Carrier

mc

Y

Spring 

ms

 
Figure 1.1 General layout of the experiment set-up 
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III- Governing Equations: 

 

        For the spring-mass system shown in Figure-1.1, in the case of free vibration in the 

vertical direction Y, the equation of motion of the system is given by: 

 

M𝑦̈ + Ky=0 (1) 

 

where: 

M is the total mass of the system, and equals to:
 SC mmmM   

m is the total mass of the disks: 
 dmm ∑  

 

From the equation of motion, we can find that: 

 

* Natural frequency=
M

K
n   (2) 

* Period of oscillation=
K

mmm
2

K

M
2

2 SC

n


 




  (3) 

 

For the linear spring following Hook’s law, then: 

 

KFS   (4) 

 

But for the present system, the spring force FS is also given by: 

 

mgFS   (5) 

 

Combine eqns-4 & 5, to get: 

 


g

K
m   (6) 

For a helical spring, the stiffness is expressed analytically as: 

 

3

4

ND8

Gd
K   (7) 
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IV- Experimental Procedures: 

 

1. Hang the spring vertically with the load carrier attached to its end, and then 

measure the total length of the spring Lo. (This length is not the initial free length 

of the spring Li ) 

2. Add one disk to the carrier (m = md), and measure the total length of the spring 

after elongation L. 

3. With this loading, stretch the spring downward, then leave it to oscillate freely 

and record the time needed to complete ten oscillations T. 

4. Add another disk so that (m = 2md), and repeat steps-2 & 3. 

5. Continue by adding a disk each time for total ten disks (m = 10md), and each 

time measure the parameters L and T. 

 

 

V- Collected Data: 

 

Table-1.1 Data collected from the experiment execution 

Trial m (kg) L (cm) T (second) 

1    

2    

3    

4    

5    

6    

7    

8    

9    

10    

 

 

Table-1.2 Dimensions and parameters of the spring 

Parameter Value 

N (turns)  

D (mm)  

d (mm)  

Lo (cm)  
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VI- Data Processing: 

 Square eqn-3, to get:  SC

2
2 mmm 

K

4



  

 Draw 2
 versus m ( call it figure 1.2 )  

1. Slope 
K

4
S

2

1


   K is determined. 

2. Intercept with the vertical   axis  SC

2

Inter mm
K

4
Y 


   mS is determined. 

3. Intercept with the horizontal  axis  SCInter mmX   -    mS is verified. 

 From eqn-6:  
g

K
m   

 Draw m versus   ( call it figure 1.3 )  

 

1.  Slope 
g

K
S2    K is also obtained. 

2. Multiply the slopes of the previous two steps. You get the value: 
g

4
SS

2

21


  g 

is found, and compared to the standard value. 

 

 Use eqn-7: 
3

4

ND8

Gd
K   

1. Find K directly. 

2. Compare the two experimental values of K obtained before, with this theoretical 

value. 
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VII- Results: 

 

Table-1.3 Data processing analysis 

Trial m (kg)  (mm)  (second) 2
 (second)

2 

1     

2     

3     

4     

5     

6     

7     

8     

9     

10     

 

 

Table-1.4 Data processing results 

Spring Stiffness K 

K (theoretical) = …………… (N/m) 

From: Slope K (N/m) Percent Error () 

Figure-1.2    

Figure-1.3    

 

Spring Effective Mass ms 

From Figure-1.2: 

YInter (kg.m/N)  ms (kg)  

XInter (kg)  ms (kg)  

 

Gravitational Acceleration g 

From Figures-

1.2 & 1.3 

S1S2 (sec
2
/m) g (m/sec

2
) Percent Error () 

   

 

 

modulus of rigidity  G 

From Figures-

1.2  

slope (m/N) G (Gpa) Percent Error () 
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VIII- Discussion and Conclusions: 

 

 Answer the following questions: 

1. In Eq.5 mgFS  , why didn’t we equate the spring force FS with the total weight 

of the system Mg? 

2. What is the physical meaning of the Effective Mass of a spring? Is there an 

effective mass for Torsion springs? 

3. What is the relationship between the periodic time and the mass?  

4. If you use another spring with larger wire diameter, what is the effect on 

stiffness? 

5. If you use a compression spring instead of the tension spring with the same mass 

and geometry configuration, dose the stiffness remains the same or it will change? 

Why? 

6. You are an engineer in a scientific facility that tests the stiffness of manufactured 

springs, which one of the previous methods would you chose (static or dynamic) ? 

Why?  

   

 From your own observations, mention the sources of errors in the experiment and 

suggest alternative procedures to reduce the errors. 

 

 Design a similar experiment to find the torsion stiffness for a torsion spring.    
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I- Introduction: 

 

      Simple pendulum is simply a concentrated mass m attached to one of the ends of a 

mass-less cord of length l, while the other end is fitted as a point of oscillation, such that 

the mass is free to oscillate about that fixed point in the vertical plane.  The compound 

pendulum differs from the simple one in that it has a mass distribution along its length -

that is its mass is not concentrated at a given point-, therefore it has a mass moment of 

inertia I about its mass centre. 

Any rigid body that has a mass m, and mass moment of inertia I and suspended at a given 

distance h from its centre of gravity represents a compound pendulum.  

        It should be realised in the derivation of the governing equations, that the angle of 

oscillation of the pendulum, simple or compound, should be small. 

II- Objectives: 

        This experiment aims at studying the behaviour of both simple and compound 

pendulums, in order to realise the following objectives: 

1. The independence of the period of oscillation of the simple pendulum from its 

mass. 

2. The relationship between the period of oscillation and its length. 

3. The determination of the value of the gravitational acceleration g, to be compared 

with the known standard value. 

4. Find the radius of gyration for a compound pendulum  

 

III- System Description: 

Part One- Simple Pendulum: 

 

        The schematic representation of the simple pendulum is shown in Figure-2.1-a, 

which consists of a small ball of mass m suspended by a mass-less cord of length l.  The 

system is given an initial small angular displacement , and as a result the pendulum 

oscillates in the vertical plane by a time varying angle (t) with the vertical direction. 

 

Part Two- Compound Pendulum: 

 

        The compound pendulum is schematically shown in Figure-2.2-b below, and it 

consists of a uniform slender bar of total mass m and length l, which may be suspended at 
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various points A along the bar with the aid of a sliding pivot situated at any distance h 

from the centre of gravity of the pendulum. 

(For this case, the centre of mass is at the middle of the rod). 

     As a result of an initial angular displacement  the pendulum oscillates also with a 

time-varying angle (t) with the vertical direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-2.1 Schematic representation of the (a)simple pendulum (b)compound pendulum 

 

IV- Governing Equations: 

 

Part One - Simple Pendulum: 

 

        The dynamic equilibrium equation (equation of motion) corresponding to the 

tangential direction of motion of the concentrated mass yields: 

 

mI𝜃̈+ mgsin 𝜃 = 0 (1) 

              

Assuming small magnitude for the angle , so that  sin , and simplifying   eqn-1 

leads to the equation: 

𝜃̈+ 
𝑔

𝐼
 𝜃= 0 (2) 

l

m





l/2

h
Rod

(l,m)

A

neutral

position
neutral

position

Centre of

Gravity CG

(a)

Simple Pendulum

(b)

Compound Pendulum

A
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Let the motion defined by the function (t) be a simple harmonic motion defined 

as 𝛉(𝐭) = 𝛂𝐬𝐢𝐧n t , where n is the natural frequency of the pendulum.  Substituting for 

  in eqn-2 and simplifying gives n as: 

l

g
n   (3) 

 

The period of oscillation , is defined as the time required to complete one full cycle of 

motion or one oscillation. By observing the function (t), the period  is given as: 

g

l
2

2

n





   (4) 

 

Part Two- Compound Pendulum: 

 

         For the compound pendulum, the dynamic equilibrium equation is obtained by 

taking the moments about pivot point A as given below: 

 

IA 𝜃̈+ mgsin𝜃 =0 (5) 

 

where; IA is the mass moment of inertia of the rod about the pivot point A.   

Assuming small angle of oscillation and simple harmonic motion for (t), leads to the 

following expressions for the natural frequency n and period , respectively: 

 

A

n
I

mgh
=ω  (6) 

mgh

I Aπ2τ=  
(7) 

 

The mass moment of inertia about the pivot point IA, is defined in terms of the mass 

moment of inertia about the centre of gravity ICG and the distance h between the centre of 

gravity and the pivot point A as: 
2mhII CGA +=  (8) 

 

or 

)hK(mI 22
CGA   (9) 

 

where; KCG is the radius of gyration of the rod about the centre of gravity. 
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      Using eqns-7 & 9, then the period of oscillation of the compound pendulum is given 

by the expression: 

gh

hK
2

22
GC 

   (10) 

 

V- Experimental Procedures: 

 

Part One- Simple Pendulum: 

 

Steel and plastic balls are used separately in this experiment as follows: 

 

1. Attach the cord to the steel ball at one end, and attach the other end to the main frame.  

Record the length of the cord l. 

2. Displace the ball form its neutral position by a small amount, and then release it to 

oscillate freely.  Measure and record the time T required to complete ten oscillations. 

3. Adjust the cord length to a new value and repeat step-2. 

4. Repeat Step-3 six more times so that eight pairs of l and T are recorded. 

5. Replace the steel ball with the plastic ball and repeat steps-1 through 4.  

 

 

Part Two- Compound Pendulum: 

 

        The experimental procedures for the compound pendulum part are carried out 

through the following steps: 

 

1. Measure and record the total length l of the rod.  Since the rod is uniform, the 

geometrical centre point coincides with the rod's centre of gravity CG. 

2. Pivot the rod at an arbitrary point A, and measure the distance from that point to the 

centre of gravity h.  Displace the rod by a small angle from its neutral position and 

release it freely, then measure and record the time required to complete ten 

oscillations T. 

3. Change the pivoting point A and repeat step-2. 

4. Repeat step-3 eight more times so that ten pairs of h and T are recorded. 
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VI- Collected Data: 

 

Part One- Simple Pendulum: 

    

Table-2.1 Collected data for the simple pendulum part 

 

Part Two- Compound Pendulum: 

 

l = …………cm 

 

Table-2.2 Collected data for the compound pendulum part 

Trial h (cm) T (second) 

1   

2   

3   

4   

5   

6   

7   

8   

9   

10   

 

 

 

 

 

Trial Steel Ball Plastic Ball 

l (cm) T (second) l (cm) T (second) 

1     

2     

3     

4     

5     

6     

7     

8     

9     

10     
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VII- Data Processing: 

 

Part One- Simple Pendulum: 

 Use eqn-4: 
g

l
2   

Evaluate the theoretical period Theor corresponding to each length l. 

The values of Theor are to be compared with the experimental values Exper.  

 

 Square both sides of eqn-4 to get: 
g

l
πτ 22 4  

 

 Draw 
2
 versus l ( call it  Figure 2.2) 

Slope = 
g

24
   g is found and compared to the standard value. 

 

Part Two- Compound Pendulum: 

 Square eqn-10 and rearrange to get:  22
CG

2
2 hK

g

4
h 


  

 Draw 
2
h versus h

2
 ( call it Figure-2.3) 

1. Slope = 
g

4 2
 find g and compare it to the standard value. 

2. Intercept with the vertical  axis 
2

24
CGInt K

g
Y

















   KCG is obtained. 

3. Intercept with the horizontal  axis 2
CGInt KX   KCG is verified. 

 

 Draw  versus h ( call it Figure-2.4.)  

 

 Find min and the corresponding value of h. 
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VIII- Results: 

 

Part One- Simple Pendulum: 

 

Table-2.3 Data processing analysis for the simple pendulum part 

Steel Ball 

Trial l  

(cm) 

Exper 

(second) 

Theor 

(second) 

(Exper.)
2 

(second)
2 

 Percent 

Error () 

1      

2      

3      

4      

5      

6      

7      

8      

9      

10      

 

 

 

Table-2.4 Data processing analysis for the simple pendulum part 

Plastic Ball 

Trial l  

(cm) 

Exper 

(second) 

Theor 

(second) 

(Exper.)
2 

(second)
2 

 Percent 

Error () 

1      

2      

3      

4      

5      

6      

7      

8      

9      

10      
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Table-2.5 Data processing results for the simple pendulum part. 

Quantity Slope from 

Figure-2.2: 

g (m/s
2
) Percentage Error 

of g () 

Steel Ball    

Plastic Ball    

 

Part Two- Compound Pendulum: 

 

Table-2.6 Data processing analysis for the compound pendulum part. 

Trial h (cm)  (second) h
2
 (cm)

2
 

2
h (cm.sec

2
) 

1     

2     

3     

4     

5     

6     

7     

8     

9     

10     

 

Table-2.7 Data processing results for the compound pendulum part 

From Figure-2.3 

Slope (sec.
2
/m) g (m

2
/sec.) Percent Error () 

   

YInt (sec
2
.m) KCG (cm)  

   

XInt (m
2
) KCG (cm) Percent Error () 

   

 

From Figure-2.4 

min (sec.) 

 

h at  = min (cm) 
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IX- Discussion And Conclusions: 

 

 Answer the follwing questions:- 

1. What do we mean by “Simple Harmonic Motion” (SHM)? 

2. Why did we use two masses with identical geometries for the simple pendulum 

experiment? 

3. What is the physical meaning of h being equal to zero?  What is the 

corresponding period of oscillation? 

4. Why does the compound pendulum have the identity of possessing two values of 

h corresponding to the same period of oscillation  ? 

5. Based on the equation of motion, what is the difference between the simple and 

compound pendulums?  How can we replace the compound pendulum with a 

simple pendulum having the same period of oscillation? 

 

 From your own observations, mention the sources of errors in the experiment and 

suggest alternative procedures to reduce the errors. 

 

 Mention some applications of both simple and compound pendelums in practical 

life. 

 Discuss the physical meaning of the radius of gyration and give examples for it is 

importance from practical life.   

 

 In this experimet, we use pendelums to find the gravitional accelertaion. Design 

another experiment with different proceduers for the same perpouce.    
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I- Introduction: 

        The Bifilar Suspension is a technique that could be applied to objects of different 

shapes, but capable to be suspended by two parallel equal-length cables, in order to 

evaluate its mass moment of inertia I about any point within the body. 

In this experiment, the technique will be applied to find the mass moment of inertia of a 

regular cross-section steel beam about its centre of gravity. 

II- Objectives: 

        This experiment is to be performed in order to evaluate the mass moment of inertia 

of a prismatic beam by introducing the method of Bifilar Suspension Technique. 

III- System Description: 

        The layout of the experiment is shown schematically in Figure-3.1, in which we 

have a regular rectangular cross-section steel beam, of length L, total mass M, and mass 

moment of inertia about its centre of gravity I.  The beam is suspended horizontally 

through two vertical chords, each of length l, and at distance b/2 from the middle of the 

beam CG.(Two small chucks are provided for attachment). 

    

        The system is initially balanced, and by exerting a small pulse in such a way that the 

beam keeps oscillating in the horizontal plane about its middle point (centre of gravity 

CG), then by virtue of the tension forces initiated in the suspension chords, the beam will 

oscillate making an angle θ with its neutral axis, and the suspension chords will make an 

angle  with the original vertical position.  

 
Figure-3.1 General layout of the Bifilar Suspension 
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IV- Governing Equations: 

 

        In the system shown in Figure-3.1, and under equilibrium conditions, the tension 

force in each chord is equal to Mg/2, and by disturbing the system with an initial angular 

displacement  about the middle point in the horizontal plane, it will oscillate with a 

time-varying angle θ(t) under the action of the tension forces in the chords. 

 

     Taking the summation of moments about the middle point (Centre of Gravity CG), we 

get the equation of motion as: 

I𝜃̈+(
Mgb 

2
 ) ∅ = 0 (1) 

 

But: 

 l
b


2

   (By equating the length of the arc of oscillation) 

 

Substituting in eqn-1, and rearranging: 

 

𝜃̈ + (
𝑀𝑔𝑏2

4𝐼𝑙
) 𝜃 = 0 (2) 

 

From the above equation of motion, we find that: 

 

* Natural frequency = 
Il

Mgb
n

4

2

                                                                (3) 

* Period of oscillation = 
2

4
2

2

Mgb

Il

n





                                   (4) 

 

# Analytical Solution: 

 

        Using the dimensions of the beam, then its mass moment of inertia about the centre 

of gravity can be found analytically as follows: 

 

I = I (solid beam) – I (holes) + I (two chucks)   = IS – IH + IC (5) 

12

whL

12

LM
I

32
S

S


  (6) 









 2222

H
2

HH X2r
2

15
hrXM2rM

2

15
I ∑∑   (7) 
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























2

b
rhr

2

b
M2rMI

2
2

CC
2

C

2

C
2

CCC


 
(8) 

 

Where:- 

 

r: the radius of each hole. 

X: the distance between the hole and the middle point of the beam. 

rC: the radius of the chuck. 

hC: the height of the chuck. 

 

The geometry and the definitions of the basic parameters of the system are provided in 

Figure-3.1. 

 

V- Experimental Procedures: 

 

1- Attach the first chord to the main frame and measure its length, then attach the second 

chord to the main frame with the same length as the first one. (The length to be 

measured and included in the calculations l should include both the chord’s length 

and the chuck’s height, see Figure-3.1) 

2- Insert a slender rod through the middle hole of the beam, to provide as an axis of 

rotation for the beam. 

3- Hold the slender rod in place and give the beam a small displacement from one of its 

ends in the transverse direction.  The beam should oscillate in the horizontal plane 

only. 

4- Measure the time elapsed to complete ten oscillations T. 

5- Release the chords then re-attach them at another length l, and repeat steps-2, 3 & 4. 

6- Repeat step-5 four more times to get total six pairs of l and T. 

 

VI- Collected Data: 

 

Basic Parameters: 

 

Table-3.1 Dimensions to be used according to Figure-3.1  

Parameter Value Parameter Value 

L (cm)  rc (mm)  

w (mm)  hc (mm)  

h (mm)  R (mm)  

b (mm)  hm (mm)  

r (mm)    
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Table-3.2 Data collected  

Trial l (cm) T (second) 

1   

2   

3   

4   

5   

6   

7   

8   

 

VII- Data Processing: 

 

 Square eqn-4 to get: l














2

2
2

Mgb

I16
  

 Draw 2
 versus l ( call it  Figure-3.3) 

Slope =
2

2

Mgb

I16
   I is determined. 

 

VIII- Results: 

 

M = ………… (kg). 

 

Table-3.3 Data processing analysis for the Bifilar Suspension Technique part 

Trial l (cm)  (second) 2
 (second

2
) 

1    

2    

3    

4    

5    

6    

7    

8    

 

Table-3.4 Data processing results for the Bifilar Suspension Technique part 

Quantity Slope (sec.
2
/m) I (kg.m

2
) 

From Figure-3.3   
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Analytical Solution: 

 

Table-3.5 Analytical determination of the mass moment of inertia I 

IS (kg.m
2
)  

IH (kg.m
2
)  

IC (kg.m
2
)  

I =IS  IH + IC (kg.m
2
)  

 

IX- Discussion And Conclusions: 

 

 Answer the follwoing questions:- 

1- In the first part, what modifications should be done (concerning the derivation of 

equation of motion) in order to determine the mass moment of inertia about any 

point other than the middle point of the beam?  Derive the equation of motion for 

this case. 

2- Referring to the derivation of the equation of motion for the beam, why is it 

important to keep the angle of oscillation of the beam small during the execution 

of the experiment? What is the basic assumption that is based on assuming a small 

angle of oscillation? 

 

 From your own observations, mention the sources of errors in the experiment and 

suggest alternative procedures to reduce the errors. 

 

 Design other procedures to find the mass moment of inertia other than the used in 

this experiment.    
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I- Introduction: 

 

        In this experiment, the two identical masses will be added to the primary system 

discussed in the previous experiment to find the mass moment of inertia of a regular 

cross-section steel beam about its centre of gravity. 

II- Objectives: 

        This experiment is to be performed in order to evaluate the mass moment of inertia 

of a prismatic beam by introducing the method the Auxiliary Mass. 

Then the values obtained from the this method will be compared with the values obtained 

experimentally and analytically in the previous experiment. 

III- System Description: 

        The layout of the experiment is shown schematically in Figure-4.1, in which we 

have a regular rectangular cross-section steel beam, of length L, total mass M, and mass 

moment of inertia about its centre of gravity I.  The beam is suspended horizontally 

through two vertical chords, each of length l, and at distance b/2 from the middle of the 

beam CG.(Two small chucks are provided for attachment). 

    

        The system is initially balanced, and by exerting a small pulse in such a way that the 

beam keeps oscillating in the horizontal plane about its middle point (centre of gravity 

CG), then by virtue of the tension forces initiated in the suspension chords, the beam will 

oscillate making an angle θ with its neutral axis, and the suspension chords will make an 

angle  with the original vertical position.  
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Figure-4.1 General layout of the Bifilar Suspension 

 

IV- Governing Equations: 

 

        Consider the previous system with the addition of two identical circular disks of 

radius R, mass m, and inertia Im; each at a side at distance Y from the middle of the beam. 

The resulting equation of motion of the modified system will be: 

 

( I + 2Im) 𝜃̈ + (
(𝑀+2𝑚)𝑔 𝑏2

4𝑙
) 𝜃 =0 (1) 

 

Where:- 

 

Im = m ( 𝑅2 + 𝑌2), m
2hRm   

 

Rearrange eqn-1, yields: 

 

𝜃̈ + (
(𝑀+2𝑚)𝑔 𝑏2

4𝑙(𝐼+𝐼𝑚)
) 𝜃 =0 (2) 

From eqn-2, the natural frequency and the period of oscillation are found as: 
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* Natural frequency = 
 
 m

n
IIl

mMgb

24

22




            (3) 

* Period of oscillation = 
 
 mMgb

IIl m

n 2

24
2

2
2 


 




                                             (4) 

Analytical Solution: 

 

        Using the dimensions of the beam, then its mass moment of inertia about the centre 

of gravity can be found analytically as follows: 

 

I = I (solid beam) – I (holes) + I (two chucks)   = IS – IH + IC (5) 

12

whL

12

LM
I

32
S

S


  (6) 









 2222

H
2

HH X2r
2

15
hrXM2rM

2

15
I ∑∑   (7) 

























2

b
rhr

2

b
M2rMI

2
2

CC
2

C

2

C
2

CCC


 
(8) 

 

Where:- 

 

r: the radius of each hole. 

X: the distance between the hole and the middle point of the beam. 

rC: the radius of the chuck. 

hC: the height of the chuck. 

 

The geometry and the definitions of the basic parameters of the system are provided in 

Figure-4.1. 

 

V- Experimental Procedures: 

 

1- Fix the examined system at any length l. 

2- Put the two disks (auxiliary masses) at distance Y from the beam’s middle point, each 

at a side, and record the value of Y. 

3- Displace the beam slightly as in the previous part, and again measure the time elapsed 

in ten oscillations T. 

4- Change the positions of the two masses to new value of Y, then repeat step-3. 

5- Repeat step-4 for total different six values of Y. 

 

VI- Collected Data: 
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Basic Parameters: 

 

Table-4.1 Dimensions to be used according to Figure-4.1  

Parameter Value Parameter Value 

L (cm)  rc (mm)  

w (mm)  hc (mm)  

h (mm)  R (mm)  

b (mm)  hm (mm)  

r (mm)    

 

l = ……………(cm) 

m = ……………(kg) 

 

Table-4.2 Data collected for the Auxiliary Mass Method part 

Trial Y (cm) T (second) 

1   

2   

3   

4   

5   

6   

 

VII- Data Processing: 

 

 Square eqn-8 to get: 
 
 mMgb

IIl m

2

216
2

2

2







  

 Draw 2
 versus Im ( call I  Figure-4.4) 

1- Slope =
 mMgb

l

2

32
2

2




   Determine g and compare it  with the standard value.  

2- Interception with the vertical  axis 
 mMgb

Il
YInt

2

16
2

2





  I is determined. 

3- Interception with the horizontal       axis 
2

I
X Int   I is verified. 

 

 

 

VIII- Results: 
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Table-4.3 Data processing analysis for the Auxiliary Mass Method part 

Trial Y (cm) Im (kg.m
2
) 2

 (second
2
) 

1    

2    

3    

4    

5    

6    

 

Table-4.4 Data processing results for the Auxiliary Mass Method part 

From Figure-4.4 

Slope (s
2
/m

2
.kg)  g (m/sec.

2
)  

YInt (sec.
2
)  I (kg.m

2
)  

XInt (kg.m
2
)  I (kg.m

2
)  

 

Analytical Solution: 

 

Table-4.5 Analytical determination of the mass moment of inertia I 

IS (kg.m
2
)  

IH (kg.m
2
)  

IC (kg.m
2
)  

I =IS  IH + IC (kg.m
2
)  

 

Comparison: 

 

Table-4.6 Comparison of I obtained by the two methods with the analytical value 

Method: I (kg.m
2
) Percentage Error () 

Analytically   

Bifilar Suspension   

Auxiliary Mass(Xint)   

Auxiliary Mass(Yint)   

 

 

 

 

 

IX- Discussion And Conclusions: 
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 Answer the follwoing questions:- 

1. In the second part (the Auxiliary Mass Method part), is it acceptable to use only 

one mass at either sides of the beam? Explain? 

 

 From your own observations, mention the sources of errors in the experiment and 

suggest alternative procedures to reduce the errors. 

 

 

 Design other procedures to find the mass moment of inertia other than the used in 

this experiment.    
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I- Introduction: 

        Forced Vibrations is that mode of vibrations in which the system vibrates under the 

action of a time-varying force, generally; a harmonic external excitation of the form: 

)ωsin()( tFtf = . 

The importance of this mode rises in the practical field, as machines, motors and other 

industrial applications, exhibits this mode of vibrations, which may cause a serious 

damage of the machine. 

 II- Objectives: 

        In this experiment, we will apply both modes of vibrations; free and forced modes of 

vibrations, on a system in order to: 

1- Evaluate of the natural frequency of the system using the following methods: 

1) Equation of motion. 

2) Time measurements. 

3) Drum speed. 

4) Resonance observation. 

And the results of the various methods will be compared with the analytical value from 

the equation of motion. 

2- Study the response of the system under the action of a time-varying force, then to 

determine and compare the magnification factor obtained both theoretically and 

experimentally. 

 

III- System Description: 

 

        The system to be used in the experiment is shown in Figure-5.1, which consists of a 

regular rectangular cross-section beam of mass Mb, length L, width w and thickness t; 

pinned at one end to the main frame at point O, where it is free to rotate about, and 

suspended from point S by a linear helical spring of stiffness K at distance b from point 

O. 

     A motor with mass (M = 4.55 kg) is fitted on the beam at distance a from pivot point 

O, and drives two circular discs with total eccentric mass m at distance e from the centre 

of the disc (The eccentric mass is obtained from a hole in each disk with radius r and 

thickness td).  When the motor rotates these discs with speed , a harmonic excitation is 
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established on the beam, and as a result of that, the beam vibrates in the vertical plane 

with angle (t) measured from the horizontal reference direction. 

        The free end of the beam carries a pencil that touches a rotating cylinder (drum) 

with a strip of paper covering it, so that you can draw the vibrations of the beam for a 

given period of time. 

 
Figure-5.1 General layout of the experiment set-up 

 

IV- Governing Equations: 

 

Part One- Free Vibrations: 

 

Referring to the system shown in Figure-5.1, with the motor is not operated; by giving 

the system an initial displacement and then leaving it to oscillate freely, the system will 

exhibit a free mode of vibrations, and the equation of motion in such case is obtained by 

taking the summation of moments about point O as follows: 

 

I𝜃̈ + Kb
2𝜃=0 (1) 

 

From which the natural frequency is found to be: 

 

I

Kb
n

2

ω =  (2) 

 

where:- 

+=
3

2
2 L

MMaI b  (3) 

3

4

8ND

Gd
K =    (For a helical spring)     (4) 
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Also from time measurements, the natural frequency is equal to: 

 

τ

π2
ω =n

     (5) 

 

in addition to getting the drum in touch with the   pencil at the end of the beam, a graph 

of the oscillations of the beam can be obtained by rotating the drum.  And so, we can say 

that: 
 

V

C
=τ      (6) 

where:- 
 

C is the distance travelled per cycle. 

V is the circumferential velocity of the drum. 
 

And again, the natural frequency is obtained from Eq.5. 
 

Part Two- Forced Vibrations: 
 

        When the motor is in operation, the beam will be imposed to a harmonic excitation 

due to the eccentric mass in each disk.  This harmonic excitation will have the form: 
 

)ωsin(ω)ωsin()( 2 tmetFtf ==      (7) 
 

In this case, the equation of motion of the system is altered by: 
 

    I𝜃̈ + Kb
2𝜃=ame 𝜔2

sin (𝜔𝑡) (8) 
 

Let )ωsin(Θ)(θ tt = , then the solution of the differential equation in (8) gives the 

amplitude of the angular displacement of the beam  as: 
 

22

2

ω-

ω
Θ

AIKb

mea
=      (9) 

 

And so, the vertical displacement of the end of the beam Y will be: 
 

2
A

2

2

IKb

meaL
LY






-
      (10) 

Magnification Factor: 
 

        Magnification Factor MF is the ratio between the dynamic amplitude of oscillation 

and the static amplitude of the same mode of displacement (degree of freedom).  And for 

this case, it is expressed as: 
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Static

Dynamic

Y

Y
MF       (11) 

where:- 

 

DynamicY , is given by eqn-10 above. 

2

2

Static
Kb

meaL
Y


      (12) 

Substitute for DynamicY  and StaticY  in eqn-11, and rearrange to get: 

2r1

1
MF

-
      (13) 

where:- 

n

r



  is the frequency ratio. 

 

V- Experimental Procedures: 
 

1. Use the system described above while the motor is turned off, and give the beam a 

small vertical displacement, then release it to oscillate freely for ten oscillations.  

Record the elapsed time T. 

2. Bring the drum in slight touch with the pencil at the end of the beam, after 

attaching the roll of paper to the drum, and then give the beam a small pulse to 

oscillate freely as before with the drum is held fixed. 

3. Turn the motor of the drum on, and after ten seconds stop it and remove the chart 

for using it in the calculations. 

4. Return to the original system by separating the drum from the pencil, and switch 

the motor on at a relatively slow speed. 

5. Increase the speed of the motor slowly and notice the response of the system, and 

at the same time; try to identify the point at which resonance takes place (When 

the largest amplitude of vibrations is noticed).  Record the speed of the motor at 

that state Nr. 

6. Attach the paper roll again to the drum, and make the pencil in touch with the 

drum.  Activate the motor and set it to any desired speed (Choose one that gives 

an appreciable amplitude of vibrations in the beam), and record that speed N. 

7. Rotate the drum again for a while, and take the response curve obtained for the 

subsequent calculations. 
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VI- Collected Data: 

 

 

 

 

 

 

 

 

 

Figure-5.2 Nomenclature of the coil spring and the rotating disc 

Basic Parameters And Dimensions: 

 

Table-5.1 Basic dimensions and parameters according to Figures-5.1& 2 

Beam 

Parameter Value Parameter Value 

L (cm)  b (cm)  

w (mm)  t (mm)  

Motor, Rotating Disks 

Parameter Value Parameter Value 

a (cm)  r (mm)  

e (mm)  td (mm)  

Spring 

Parameter Value Parameter Value 

D (mm)  d (mm)  

N (turns)    

 

Table-5.2 Data collected from the experiment 

Free Vibrations Part 

Parameter Value 

T (second)  

C [from the first chart] (mm)  

V (m/s)  

Forced Vibrations Part 

Parameter Value 

Nr (rpm)  

N (rpm)  

A [amplitude of the second chart] (mm)  

Eccentricity

e

Hole radius

r

Disk

Wire diameter

d

Spring

Coil dimeter

D
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VII- Data Processing: 

 

Part One- Free Vibration: 

 

 From the dimensions provided, and using eqns-3 & 4. Find Mb, I and K. 

 Apply in eqn-2 to find the theoretical natural frequency n-theor 

 From T find , as: 
10

T
   

 From eqn-5, find n. 

 Compare it with n-theor. 

 Calculate the velocity of the drum V, and use eqn-6 to find . 

 Apply again in eqn-5 to find n. 

 Compare it with n-theor 

 

Part Two- Forced Vibration: 

 

 For the speed of the motor at resonance Nr, find the equivalent angular frequency of 

the motor . 

 This frequency will be equal to the natural frequency of the system n. 

 Compare it with n-theor. 

 From the value of N at which the second chart has been plotted, find the 

corresponding angular frequency . 

1.  Evaluate the frequency ratio  

 r using n-theor, and apply  eqn-13 to evaluate MF. 

2.  From eqn-12, find StaticY , and from the second chart evaluate DynamicY , then apply 

in eqn-11 to evaluate MF.  

3. Compare the results of the two ways. 
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VIII- Results: 
 

Table-5.3 Data processing analysis 

Parameter Value 

Mb (kg)  

I (kg.m
2
)  

K (N/m)  
 

Table-5.4 Results of the natural frequency by the various methods 

Method Natural Frequency n 

(rad/sec) 

Percent Error () 

Analytical (E.O.M)   

Time Measurements   

Drum Speed   

Resonance Observation   
 

Table-5.5 Magnification Factor MF results 

Methode-1  (rad/sec) r (/n) MF Percent Error 

()    

Methode-2 Ydynamic (mm) Ystatic (mm) MF  

   
 

IX- Discussion And Conclusions: 
 

 Answer the following questions:- 
 

1. What is the meaning of the Static Amplitude of oscillation? In this case, derive 

the expression of (Ystatic) given in eqn-12? 

2. In the derivation of the equation of motion for the system, why did not we 

consider the effect of the gravitational forces (weights of its components) although 

they have moments about point O? 

3. For a practical system like a machine, suffering from such mode of vibrations, 

how could you modify its parameters ( or ), or add other components, in a way 

that minimises vibrations level? 

 From your own observations, mention the sources of errors in the experiment and 

suggest alternative procedures to reduce the errors. 
 

 In this experiment, the unbalance causes the forced vibration. Mention other 

practical sources that causes forced vibration. 
 

 Discuss in your own language the concept of magnification factor and its relation 

to vibration analysis.  
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I- Objectives: 

1) To introduce “Dunkerley’s Equation”, and demonstrate its use in studying 

transverse vibrations of beams. 

2) To recognise the application of this equation on a simply supported beam, for the 

aim of: 

1- Determining the natural frequency n of the simply supported beam, and then 

to compare it with the analytical value. 

2- Evaluation of its effective mass MEff, and then comparing it with the 

theoretical value. 

3- Determining the stiffness of the beam K, to be compared with the theoretical 

value. 

 

II- System Description: 

 

        The system under study is shown in Figure-7.1 below, which consists of a simply 

supported rectangular cross-section beam, of known dimensions L, w & t, modulus of 

elasticity E, total mass Mb and effective mass MEff. 

Auxiliary masses (disks) M may be added to the system. 

An electrical motor is fixed on the beam, and rotates a circular disk with eccentric mass 

to induce vibrations on the system. 

 

 
 

Figure-7.1 General layout of the experiment set-up 
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III- Governing Equations: 

 

For the system shown in Figure-7.1, the equation of motion is given by: 

 

(𝑀 + 𝑀𝐸𝑓𝑓)𝑌̈ + KY =0 (1) 

 

From which the natural frequency of the whole system ns is found as: 

 

Eff

ns
MM

K


      (2) 

 

Square and expand this equation to get: 

 

2
nb

2
nm

2
ns

Eff

2
ns

111

K

M

K

M1


      (3) 

 

This equation is known as the “Dunkerley’s Equation”,  
 

Where:- 

 

     ns is the natural frequency of the whole system. 

     nm is the natural frequency of the motor. 

     nb is the natural frequency of the beam. 

 

Analytical Solution: 

 

1. Natural Frequency (nb): 

 

        Analytically, for a simply supported beam, an expression for the natural frequency 

n can be derived to give: 

 

3
b

2

4

2
n

LM

EJ

AL

EJ



       (4) 

2. Effective Mass (MEff): 

         

The effective mass MEff of a simply supported beam is given in terms of its total mass Mb 

by the expression: 

bbEff M485714.0M
35

17
M       (5) 
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3. Stiffness (K): 

 

The stiffness of simply supported beam is given as:  
 

3L

EJ48
K       (6) 

Where:- 

J is the polar moment of area and is found as: 
12

bh
J

3

  where: b is the width of the beam 

and h is the thickness of the beam.  

 

IV- Experimental Procedures: 
 

1. Start with the system shown in Figure-7.1 without any additional masses, and 

activate the motor to initiate vibrations on the beam. 

2. Increase the speed gradually and observe the behaviour of the system, until you 

identify the resonance state where maximum amplitude of vibrations takes place, 

then record the speed of the motor NR. 

3. Add a (M) mass to the beam; and again, record the speed of the motor at 

resonance NR. 

4. Repeat step-3 another eight times to get total ten pairs of M and NR. 
 

V- Collected Data: 
 

Table-7.1 Dimensions of the beam 

Parameter Value 

L (cm)  

w (mm)  

t (mm)  

 

Table-7.2 Data collected for the Dunkerley’s Equation part 

Trial M (kg) NR (rpm) 

1   

2   

3   

4   

5   

6   

7   

8   

9   

10   
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VI- Data Processing: 

 

 For each value of NR obtained, find the corresponding natural frequency for the 

system ns. 

 Draw 

2

ns

1












versus M, (call it Figure-7.2). 

1) Slope = 
K

1
 K is determined. 

Intercept with the vertical axis 

2

1












nb

InterY


nb is found. 

Intercept with the horizontal axis EffInter M-X   Verify MEff. 

 

 Use eqn-4 to find nb 

 Compare it with the experimental values 

 From eqn-5, find MEff 

Compare it with the experimental value. 

 Determine K from eqn-6 

Compare it with the experimental value. 

 

VII- Results: 

 

Table-7.3 Data processing analysis for the Dunkerley’s Equation part 

Theoretically: 

MEff (kg)  

K (N/m)  

nb (rad/sec)  

 

Table-7.4 Data processing results for the Dunkerley’s Equation part 

From Figure-7.4 

Slope (m/N) K (N/m) Percent Error () 

   

YInter (sec/rad)
2
 nb (rad/sec) Percent Error () 

   

XInter (kg) MEff (kg) Percent Error () 
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VIII- Discussion and Conclusions: 

 

 Answer the following questions:- 

 

1. Previously, both translational and rotational vibrations were examined. Mention 

the main differences between these types of vibration and the transverse vibration.  

2. What is the relationship between the added mass and the natural frequency of the 

tested beam? Discus the physical meaning of this relation and how it can be used 

to control vibration levels. 

3. In derivation of the mathematical model, what assumption been taken in 

consideration to transform the physical system to mass-spring model?  

 

 From your own observations, mention the sources of error in this experiment and 

suggest alternative procedures to reduce it. 

 

 In this experiment, the observation of first resonance was used to determine the 

natural frequency of the whole configuration. Dose this approach is acceptable for 

this prepuce? Suggest another approach to find the natural frequency.  

 

 Dunkerley’s Equation was and still an important to analyze the systems that 

contain multi-parts. Mention some of life applications that can be analyzed using 

this equation.        
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I- Objectives: 

To demonstrate the principle of operation of the “Un-damped Dynamic Vibration 

Absorber” in eliminating vibrations of single degree of freedom systems. 

 

II- System Description: 

 

        The Vibration Absorber is a secondary vibratory system attached to a primary one, 

such that it eliminates the vibrations of that primary system.  One type of such absorbers 

is the Un-damped Dynamic Vibration Absorber, which is simply a spring-mass system. 

Figure-7.1 below shows a form of such vibration absorbers; in which a cantilever beam 

having two identical masses at both ends -each at distance LC- is fitted to the system used 

before and shown in Figure-7.1 without the auxiliary masses. 

The new system can be represented by a two-degrees of freedom system as the one 

shown schematically also in Figure-8.1, where: 

 

M1 is the mass of the primary system (the beam and the motor). 

M2 is the mass of the secondary system (each of the two suspended masses). 

K1 is the stiffness of the simply supported beam. 

K2 is the stiffness of the cantilever beam. 

 

 
Figure-8.1 General layout of the original system after the addition of the vibration 

absorber 

 

        Taking each system separately (primary & secondary), the equations of motion for 

the two systems are given by: 

M1ÿ1 + K1y1 + K2(y1 − y2) = F sin(ωt) 

 
(1) 

M2ÿ2 +K2(y2 − y1) = 0 

 
(2) 
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From which the steady state response is found for both as: 

 

 
   2

2
2

22
2

121

2
22

1
KωM-KωM-K+K

FωM-K
=Y      (3) 

   2
2

2
22

2
121

2
2

KωM-K ωM-K+K

FK
=Y

 (4) 

 

But: 

1

Static
K

F
      (5) 

 

So, eqn-3 becomes: 

 

1

2

2
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
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


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







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


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









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




















     (6) 

 

Figure-8.2 below shows a graph of 
Static

1Y


versus 

1n


 for the primary system. 

 

 

Figure-8.2. Magnification factor versus frequency ration for the primary system 

 

 

Static

1Y


 

1n


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Considering eqns-3 & 6, to eliminate the vibrations of the primary system, then: 

01 Y   02

22  MK   
2

22

M

K
  

But, at the state of resonance of the primary system: 
 

2

2

1

1

1

12
1n

2

M

K

M

K

M

K
      (7) 

 

That is, the natural frequency of the primary system should be equal to that of the 

secondary systems, and so: 
 

3
C2

CC2
R

LM

IE3
      (8) 

 

To find the values of r1 and r2 in Figure-8.2, then: 

 

  

 

Define: 

n

r



 , 

1

2
M

M

M
R      01rR2r 2

M
4    then:  

 

2

R4RR2
r

M
2

MM2
2,1


      (9) 

 

From eqn-9 we can find that: 
 

















M
2

2
2

1

21

R2rr

1rr
     (10) 

 

IV- Experimental Procedures: 

 

1. Run the motor at until the resonance occurs; then slide the two masses slowly on 

the cantilever beam by equal distances, until you detect the best sense of 

elimination of vibrations of the simply supported beam.  Record the length LC. 

 

2. Keep the vibration absorber in the previous modified configuration, and run the 

motor at low speed.  Increase the speed slowly, and determine the speed of the 

motor at each one of the two cases of resonance shown in Figure-8.2; that is, N1 

and N2 corresponding to r1 and r2, respectively. 

 

   0KωMKωMKK∞  Y
2

2
2

22
2

1211 
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V- Collected Data: 

 

Table-8.1 Parameters of the cantilever beam and the suspended masses 

Parameter Value 

LC (cm)  

wC (mm)  

tC (mm)  

M2 (kg)  

 

Table-8.2 Data collected for the Vibration  Absorber part 

Parameter Value 

N1 at r1 (rpm)  

N2 at r2 (rpm)  

 

VI- Data Processing: 

 

 Apply in eqn-8, with 1nn    to find LC for the cantilever beam. 

 Compare LC calculated with that obtained experimentally. 

 Use eqn-9 to evaluate r1 and r2. 

 Compare these values with those observed experimentally. 

Then verify your experimental results using eqn-10. 

 

VII- Results: 

 

Table-8.3 Data processing results for the Vibration Absorber part 

Parameter Theoretical Experimental Percent Error () 

LC (mm)    

r1    

r2    
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VIII- Discussion And Conclusions: 

 

 

 Answer the follwing questions:- 

 

1. How dose the vibration absorber control vibration level?  

2. After adding the absorber, two resonances were generated. Explain why?  

 

 From your own observations, mention the sources of error in this experiment and 

suggest alternative procedures to reduce it. 
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I- Introduction: 

        Balancing is an essential technique applied to mechanical parts of rotational 

functionality (wheels, shafts, flywheels…), in order to eliminate the detected irregularities 

found within it, and that may cause excessive vibrations during operation, and act as 

undesirable disturbances on the system being in use.  Such irregularities may rise due to 

the inhomogeneous distribution of material within the part, bending and deflection of 

rotating shafts, and eccentricity of mass from the axis of rotation of the rotating disks and 

rotors. 

        These irregularities lead to small eccentric masses that disturb mass distribution of 

the part, and the last generate centrifugal forces when the part is in rotation; the 

magnitude of these forces increases rapidly with speed of rotation, and enhances 

vibrations level during operation, and cause serious problems. 

II- Objectives: 

        This experiment is established in order to introduce and interpret the general features 

of balancing technique, in addition to familiarise the student with the basic steps in 

applying both static and dynamic balancing techniques on unbalanced mechanical parts. 

III- Technique Presentation: 

Part One- Static Balancing: 

 

        Static Balancing simply means the insurance of mass distribution about the axis of 

rotation of the rotating mechanical part in the radial directions, without consideration of 

that distribution in the axial (longitudinal) direction. 

 

        To illustrate this; consider a circular disk of perfect mass distribution, with the 

points A and B are at two opposite positions on the circumference of the disk, but each is 

on one of the faces of the disk, and suppose that a point mass with the same value is fixed 

at each of the two points A and B. 

Generally, static balancing looks to the part in the direction of its axis of rotation, so in 

this case, as the two eccentric masses at A and B are in opposite positions with equal 

distances from the central axis, the disk is considered statically balanced although these 

masses are at different axial positions. 

 

        Practically, static balancing is performed by taking the part like a disk with its axis 

of rotation oriented horizontally, and rotating it several times; and at the end of each run 
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after getting stable, a mark is made in the lower part of the disk on one of its faces.  If the 

different marks are distributed randomly over the circumference of the disk, then the disk 

is of good mass distribution and considered balanced; but in the case that they accumulate 

in a small region, it is realised that there is a mass concentration in that part of the disk, 

and this can be treated either by taking small mass from there, or by adding mass to the 

opposite position of the disk. 

 

        Static Balancing Machine shown in Figure-10.1 below is used for faster and more 

accurate static balancing operations.  The machine is simply a pendulum, that is balanced 

and stable in a vertical configuration with no loading, and free to tilt in all directions 

about a ball joint; but when the pendulum is loaded with an unbalanced disk on its 

platform, it tilts by some angle from the original orientation.  The side to which it tilts 

shows the position of the eccentric mass, and the angle by which it tilts  is proportional 

to the magnitude of that eccentric mass to be compensated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-10.1 Schematic representation of the Static Balancing Machine 
 

        From the previous discussion, the only condition to be satisfied for static balancing 

to be achieved is that:- 

“The resultant force of all the forces caused by the rotation of the out of balance masses, 

in a given rotating part should be zero”, that is: 

 

0Fi 


∑                  (1) 

 

The force Fi is given by: 
 

2
iiemFi                                          (2) 

Before

Loading

After 

Loading

Ball

joint

pendulum



unbalanced 

disk
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where; mi is the out of balance mass (eccentric mass). 

             ei is the distance from axis of rotation (eccentricity). 

              is the angular speed of the part. 
 

(Note: Eq.1 is a vector equation, in which each force is a vector of a magnitude given by 

Eq.2, and direction denoted by the angle i, measured from the reference horizontal 

direction). 
 

Part Two- Dynamic Balancing: 
 

        Dynamic Balancing differs from static balancing in that the mass distribution of the 

part is detected in all directions, and not only about the central axis; and so, not only the 

magnitude of the unbalanced mass and its distance from the axis of rotation are to be 

determined, but also its position in the axial (longitudinal) direction of the rotational part. 
 

        To illustrate the meaning of this, consider a disk rotating with an angular speed , 

with different out of balance masses mi, each with eccentricity ei from the axis of rotation.  

These masses are not expected to be in the same plane, but in different locations along 

the disk’s axial direction; in addition, each mass will produce a centrifugal force making 

an angle i with the reference horizontal direction in its own plane. 

The system described previously and shown schematically in Figure-10.2, can be easily 

treated by choosing any plane as the reference for the other planes containing the 

eccentric masses, such that each one of them is at distance ai from that reference plane. 

And for simplicity, choose plane-1 as the reference plane, where a1 becomes zero. 
 

        Generally, for the dynamic balancing of a system to be achieved, then: 

“The resultant force of all centrifugal forces caused by the out of balance masses should 

be zero (as in static balancing), in addition to that the summation of their moments about 

any point should be also zero”, that is: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-10.2 General case of a 3-D system to be dynamically balanced 
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0Fi 


∑                  (1) 

 

0M i 


∑                  (3) 

 

And again, the forces in eqn-1 are given by eqn-2, and the moments in eqn-3 are given 

by: 

 
2

iii emaMi                               (4) 

 

        And so, after choosing a reference plane, translate all the centrifugal forces in the 

other planes to that plane as forces (miei
2
) and moments (aimiei

2
), and there you can 

apply the vector summation of forces and moments separately to satisfy the requirements 

of dynamic balancing mentioned in eqns-1 & 3. 

 

 

IV- System Description: 

 

        The system we are dealing with is shown in Figure-10.3, which consists of four 

blocks with the same geometry and dimensions, but each has a different size hole and so 

different eccentric mass.  The four blocks are spaced along a shaft driven by an electrical 

motor, where each is fixed at distances Si from its end, with angle i measured from the 

horizontal direction. 

The electrical motor is attached to the shaft by a flexible belt, and provides the shaft with 

rotation at various speeds; The shaft and the four blocks are carried on a circular table, 

which is attached to the rigid frame by flexible mountings that permits the sense of 

vibrations during the operation of the system. 

 

        The system in hand is to be balanced using the principles outlined before.  The 

dimensions of all the blocks are provided, while the angular orientation and the distance 

from the end of the shaft are given for the first two blocks only; and so, you have to find 

the missing parameters of the other two blocks analytically, such that balancing state is 

accomplished. 

 

 

V- Governing Equations: 

 

        In this experiment, the major formulas to be used have been given in eqns-1, 2, 3 & 

4; and according to the given system, eqns-1 & 3 can be extracted to: 
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04321  FFFFFi


 

 0coscoscoscos 444333222111   emememem                                         (5) 

 0sinsinsinsin 444333222111   emememem                                           (6) 

 

 

04321  MMMMM i


 

 0coscoscoscos 4444333322221111   emaemaemaema                            (7) 

 0sinsinsinsin 4444333322221111   emaemaemaema                              (8) 

 

 

 To find the eccentric mass m and the eccentricity e for each block, then: According to 

Figure-10.4 shown below, by assuming that the sector removed from the circle of 

diameter D1 contributes approximately 90 of the full circle, then the eccentric mass and 

its eccentricity can be expressed by the following formulas, respectively: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-10.4 Nomenclature of the blocks 
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VI- Experimental Procedures: 

 

1- Take all the dimensions and perform your calculations as will be demonstrated, and 

complete balancing process of the rotating shaft by finding the missing variables. 

2- Fix the four blocks on the rotating shaft with the corresponding longitudinal distances 

from its end ai, and the angular orientations , according to your balancing 

calculations. 

3- Connect the shaft to the motor through the flexible belt. 

4- Run the motor, and vary its speed to observe the vibrations of the system. 

 

        According to your calculations, this configuration of the four blocks on the shaft 

should give a balanced rotating system, and you can check it out from the behaviour of 

the system as it should not generate any vibrations, and rotates smoothly. 

To differentiate the behaviour of a balanced system from an unbalanced one, you can 

disturb the configuration of the four blocks with respect to each other (change a or/and 

), and rotate the shaft again, then notice the vibrations or fluctuations of the system. 

 

VII- Collected Data: 

 

Table-10.1 Basic dimensions of the four blocks 

Differentiated Dimensions Among the Four Blocks 

Block (1) (2) (3) (4) 

D2 (mm)     

C2 (mm)     

 

Shared Dimensions Among the Four Blocks 

Parameter Value Parameter Value 

D1 (mm)  C1 (mm)  

L1 (mm)  L2 (mm)  

t (mm)  w (mm)  

b (mm)  d (mm)  

 

Table-10.2 Data obtained concerning the first two blocks-1 & 2 

Block  (˚) S (mm) 
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(1)   

(2)   

 

 

 

VIII- Data Processing: 

 

 Use the dimensions measured, and apply in eqns-9 & 10 to find m and e for each 

block. 

 Determine the quantity me for the four blocks. 

 Determine the quantity ame for blocks-1 & 2. 

 Note: 

a1 = 0   a1m1e1 = 0. 

 On a graph paper, draw to scale from the origin the vector m1e1 at the angle 1, and 

then continue from its tip with the vector m2e2 at angle 2. 

 From the end of the second vector, draw a circle with radius m3e3, and from the origin 

draw a circle of radius m4e4. 

 Join the intersection point of the two circles with the end of vector-2 to get vector-3, 

and join it with the origin to get vector-4. 

 Measure the angles of the two vectors 3 and 4. 

 On another graph paper, draw from the origin the vector a1m1e1 at the angle 1, and 

then continue with a2m2e2 at 2. 

 From the end of the second vector, draw a line at angle 3, and from the origin 

another one at angle 4. 

 The intersection of them identifies vectors-3 & 4, and their lengths are a3m3e3 and 

a4m4e4, respectively. 

And so, you can find a3 and a4, then S3 and S4, according to your scale. 

 

 

      The previous method outlined is a graphical method, and you can obtain more 

accurate results by solving eqns-5 & 6 simultaneously, to find 3 and 4, and then eqns-7 

& 8 to get a3 and a4. 

 

 

* Note that: 

1SSa ii  , as we have chosen plane-1 as the reference plane. 
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IX- Results: 

 

Table-10.3 Data processing analysis 

Block m (kg) e (mm) me (kg.m) ame (kg.m
2
) 

(1)     

(2)     

(3)    ------------------- 

(4)    ------------------- 

 

 

Table-10.4 Data processing results 

From the two graphs: 

Block  (˚) ame (kg.m
2
) a (mm) 

(3)    

(4)    

 

X- Discussion And Conclusions: 

 

1. Name some practical examples in which balancing technique is necessary, 

and so employed? 

 

2. For the disk mentioned in the example of static balancing technique, it was 

shown that it is statically balanced.  Based on that description is it also 

dynamically balanced? Why? 

 

3. It can be easily concluded that static balancing dose not imply dynamic 

balancing.  Describe how can you check that with the system used in the 

experiment, after being balanced? 

 

4. Could we consider static balancing technique an adequate alternative for 

dynamic balancing in some special cases? If yes, explain when and give a 

practical example? 
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5. You are given a build-in system that you cannot change its configuration; 

like a shaft loaded with parts of known eccentric masses, at fixed separating 

distances and with fixed angular orientations.  How could you balance such a 

system? 

 

6. Comment on your observations concerning the behaviour of the system, 

when you had tested your balancing calculations experimentally? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


